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Abstract— High quality, interactive volume visualization is 

increasingly important as advancements in volumetric capture 

devices, increased GPU power, and greater interest from the 

biological/medical community are all currently happening. 

Researchers and clinicians want to access their data anywhere 

using a wide range of devices, from smart phones up to powerful 

multicore machines. Web based visualization applications are 

increasingly popular now that browsers are supported on nearly 

all computing platforms, and the new HTML5 standards enable 

graphical interaction without the need for proprietary plugins or 

additional APIs. In this paper, we present a novel, browser-

based, out-of-core volume rendering tool that enables interactive 

rendering of large volume data on portable devices. The tool uses 

a client-server approach, where the rendering task is carried out 

on a server, and the interaction and viewing occurs through a 

client-system web browser.  

Index Terms—Volumetric data visualization, web-technologies, 

GPU computation, out of core, client-server application. 

I. INTRODUCTION 

Many applications in a wide range of domains such as 

medicine, biology, physics, and engineering benefit from 

visualization of volumetric data at interactive rates. The 

performance of GPUs has been increasing rapidly in recent 

years and their parallel processing power can now be harnessed 

in visualization applications using OpenCL/Cuda or 

OpenGL/DirectX APIs [1].  However, volume rendering is still 

challenging for larger volumes that exceed the resources 

available on the rendering hardware.  This is particularly true 

for mobile clients. Although there are some large-scale 

volumetric visualization tools available such as Vaa3D-

TeraFly[8], none of them fulfill requirements especially for 

mobile clients. Hence comes the need for a volume 

visualization architecture that can scale in performance by 

using server-based computing, yet deliver the volumes to small 

or mobile devices. 

 In this paper, we present a browser based adaptive out-

of-core volume ray-casting system for interactive visualization 

of volumetric big data on devices from smart phones and 

tablets to high end workstations. In spite of many attempts by 

researchers to develop portable interactive visualization 

systems using proprietary or specialized plugins and APIs, the 

portability and wide adaptation of those systems has been 

limited because the actual software ports to non-native 

platforms are not trivial. We have addressed this problem by 

making our system web based. Web browsers are supported in 

almost all computing platforms. HTML5, the new mark-up 

language for web content with native interaction support, 

introduction of new elements such as canvas, and integration of 

scalable vector graphics (SVG) content, allows us to perform 

interactive volume rendering in our web-based system without 

having to resort to proprietary plugins. Thus our system is 

portable to a wide range of devices and platforms.  

To be interactive requires rendering the volume at 

interactive rates (generally more than ten frames per second). 

The computation cost associated with a volume renderer, 

makes it nearly impossible to guarantee interactive frame rates 

independent of the computing power of the user’s device. To 

address this problem, we have developed a client-server 

framework; where the server is responsible for 

compute/storage/memory intensive tasks, such as volume 

processing and rendering the view.  The client is responsible 

for interaction, transfer function manipulation and display of 

the image frames rendered by the server. The appropriate 

choice of the server hardware configuration and a decent 

network connectivity will deliver interactive frame-rates. Any 

browser-based device, serving as a client, will allow the user to 

interact with the volume and interactively view the image 

rendered by the server.  

To our knowledge, ours is the first web-based, out-of-core 

volume visualization system. 

II. BACKGROUND 

In this section we will provide a quick background to the 

algorithms directly relevant to this paper. For a detailed 

discussion on volume rendering, we recommend interested 

readers to the book [2] and for scalable GPU rendering to the 

recent survey articles[3]. 

A. Front-to-Back Ray Casting Algorithm 

Ray casting based volume rendering techniques assume that 

the volume is composed of a grid of emitting and absorbing 

volume elements (voxels). The ray-casting step accumulates 

light from voxels encountered along the path of the ray after 



taking into account the volumetric attenuation of light from the 

point of origin to front of the volume. The front-to-back ray 

casting method has an advantage over back-to-front ray 

casting, in that it accumulates opacity (the degree to which 

light is not allowed to travel through) along ray and terminates 

the accumulation process when the opacity is close to 100% -- 

thus reducing rendering cost.  

The emission and absorption property of the voxel is 

assigned using a transfer function. The transfer functions play 

an important role in volume rendering and designing them is, 

in itself, an entire area of research, which is out of the scope of 

this paper. In our work, we have assumed that the transfer 

function is interactively assigned by the user.  

B. Out-of-core Volume Rendering 

Like most ray tracing algorithms, ray casting based volume 

rendering is easily parallelizable and makes effective 

utilization of the GPU processing capabilities. However, the 

available GPU memory (and even CPU memory) is often 

inadequate for the size of modern day biological/medical 

volumes. Out-of-core techniques have been proposed to handle 

this problem. Such techniques often use a standard memory-

paging scheme, in which large volumes are broken into smaller 

chunks (called bricks) such that multiple bricks can easily fit 

into the GPU memory. The bricks are retrieved and processed 

in a view-specific order, for example: starting with the bricks 

nearest to the view, followed by the bricks further away in the 

view frustum. This technique works best when a small part of 

the volume is visible and requires a relatively small number of 

brick transfers. However, when the whole volume or a 

relatively larger portion of the volume is in the view, the cost 

of streaming full-resolution volume bricks can significantly 

reduce the frame rate. Level-of-detail based techniques, similar 

to mip-map construction in traditional texture are used to 

reduce the streaming cost. A hierarchy with progressively 

lower resolution bricks is constructed from the original bricks.  

Using a top-down traversal technique, the bricks at the 

appropriate resolution for their location are identified and 

streamed. This scheme significantly reduces the cost of brick 

transfers and improves the frame rate. As an added bonus, the 

view dependent resolution doubles as a minification filter and 

hence improves the rendered image quality by reducing 

aliasing. Such out-of-core techniques have been well 

researched in the literature. We have followed a technique 

similar to [4][5]. 

C. Client-Server Architecture 

Using a client-server based system, the 

compute/storage/memory intensive component is executed on a 

server equipped with high-performance CPU and/or GPU 

hardware.  The output is then delivered to one or more client 

devices (often less powerful) through a connected network. 

The additional effort lies on building a communication layer, 

using some existing client-server protocol. We have used a 

web-based, thin-client system that handles the image frame 

display, interaction with the volume, and the interactive 

transfer function creation. 

 

III. OUR SYSTEM 

A. Adaptive Out-of-Core Volume Ray Casting 

In our adaptive out-of-core volume ray-casting algorithm 

the volume dataset is partitioned into an octree hierarchy of 

bricks, and as needed, before rendering every frame, a view 

dependent candidate set of the bricks from this hierarchy is 

computed and transferred to GPU along with an index texture 

describing mapping of the available bricks to the GPU 

memory.  

The volume is first partitioned into bricks. The brick size 

is set to be some power of 2-cube (say a cube of size 

32×32×32).  

Processing of volume data, which includes partitioning of 

volume data into the octree hierarchy and pre-computing 

gradients, is a time-consuming task and hence is, carried out in 

the GPU in a preprocessing step. The results are stored for later 

use. 

In the preprocessing stage, in addition to volume data and 

octree structure, histograms and lookup tables are also 

computed and stored. Since an octree inherently requires a 

power of 2 cube, processing any rectangular, non power of 2 

volume, requires us to create nonexisting (hereto called 

"ghost") bricks, that are not physically stored anywhere, but are 

required for octree handling. We use a lookup table to keep 

track of such ghost bricks. Depending on the data size, the 

preprocessing step can be very time consuming. For example: 

preprocessing Visible Human Project female dataset takes 

around 12 hours to preprocess data on Intel Core i7-4770K- 

GeForce GTX 780 with 15.6GB Memory.  

In our system, every brick in the octree hierarchy is 

assigned a unique id consisting of a two-component tuple 

(level#, index), where index is the flattened 3D index of the 

brick in the volume. Depending on the system memory 

capacity, bricks are stored in physical or virtual CPU memory.  

For every new rendered frame (triggered by interactive 

viewing and/or transfer function update) we traverse through 

the octree hierarchy in top-down order to compute a candidate 

brick set (see Fig. 1. a). The resolution of the bricks in the 

candidate set are chosen such that the number of voxels on the 

face of the brick closely matches with the number of pixels in 

the foot-print of the view-dependent projection of the brick 

bounding volume on the display window.  

Fig. 1.  Octree-hierarchy and D3 Interface 

Required bricks’ resolutions are identified according to 

their locations by traversing octree in breadth-first order. The 

 

       
a) View Dependent Resolution    b) D3 Interface 



allocated GPU memory is organized as a cubic volume whose 

size is an exact multiple of brick size. Thus each brick in the 

candidate set can be assigned a unique location in the GPU 

resident volume. 

Once the candidate brick set computation is completed, an 

index table is created to map voxels encountered at render time 

to the appropriate brick in the GPU cubic volume. The size of 

the index table is set to be equal to the number of the bricks at 

the leaf level. The candidate set is processed one brick at a time 

in the order in which they appear, and a tuple, composed of the 

octree level of the candidate brick and its location in GPU 

memory, is assigned to the cells of the table that correspond to 

all the descendant leaf bricks of the candidate brick. The index 

table is stored as a two-channel 2D integer texture. Once the 

index table construction is completed, view dependent 

candidate bricks and the index texture are sent to the GPU, and 

the front-to-back ray-casting algorithm is executed. 

During the ray traversal in front-to-back ray casting, for 

every point along the ray in the volume, its corresponding CPU 

brick id is computed, and the index texture pixel for this brick 

id is read to find the mapped GPU brick id and its octree 

resolution. If the voxel maps to a brick, then the offset for the 

voxel data in the corresponding GPU volume memory is 

computed, and the voxel’s properties (emission, its opacity and 

gradient) are read. If the voxel does not map to any brick, 

computation continues to the next voxel until either the ray 

exits the bounding volume or early ray termination occurs. 

Early ray termination is applied when opacity of the voxel 

reaches 95 percent or above.  

All server side implementations are carried out in C++ 

using the Boost library.  To speed-up brick lookup, the octree 

of image bricks is stored in a memory-mapped file.  GPU 

programming for octree construction and gradient computation 

is carried out using OpenCL. If the server is running locally 

then OpenGL implementation of volume ray casting is used 

otherwise OpenCL implementation is used. For the former (i.e. 

locally run server) the user has an option to run in OpenCL 

also. However, our OpenGL implementation runs faster. Front-

to-back ray casting is implemented using a two-pass rendering, 

where the first pass computes the ray exit points in the volume, 

and the second pass executes the actual front-to-back ray 

casting and rendering. The voxel gradients of the volume are 

used as the normal for shade computation using a Phong 

lighting model. 

B. Web-based Client-Server architecture (see Fig. 2) 

We implement a web-based client to make our system 

accessible from a wide variety of platforms without any setup 

requirement. The client and server connect over WebSockets 

[6]. Websockets are chosen due to their full-duplex capabilities 

on a single socket connection. Although in our implementation, 

clients trigger most of the actions in the server, full-duplex 

communication is required as for instance when preprocessing 

is completed, server needs to send a message to the appropriate 

client. Our client handles display and interaction with the 

volume and interactive transfer function creation.  

Requests initiated by the client include load new file 

request, transfer function update, and camera update, among 

others. The server renders the volume and sends back the 

rendered frame to the client through the WebSocket 

connection[6]. 

WebSocket server side is developed using Boost Library. 

The server runs n+1 threads running in parallel, where n is the 

number of simultaneous client interfaces connected to the 

server. The first thread is used for listening for socket requests 

and creating a new thread for each connection request. Each 

successive thread created, handles the rendering requests of the 

client on the other end of the connection, and transmits the 

rendered frame to the client.  

Client requests are encoded in JSON format. Every render 

request has an action tag; so the server knows what to perform 

when it parses the request. There is a queue shared between the 

listening thread and each client thread. When the listening 

thread receives the request in JSON format, it parses the 

request, and puts the appropriate action request in the 

appropriate shared queue. Client threads, on the other hand, 

polls the shared queue, and when there is an action request 

pushed to the queue, the client thread performs a rendering 

request and transmits back the rendered frame to the 

appropriate client through the open connection. The rendered 

frames are transmitted to the clients as binary images.  

D3 is used for implementing an interactive Transfer 

Function editor on the web page (Fig. 1b). The Transfer 

Function is composed of an array of anchor points, where each 

anchor point has x, y, r, g, and b float values. x represents gray 

scale voxel value, y represents transparency of the anchor 

point, and r, g, and b refer to red, green and blue color 

components of the mapped color value. The user can 

interactively add/delete/modify the opacity and the color of an 

anchor point. The user is allowed to save and retrieve the 

transfer function. 

Fig. 2.  Client-Server Architecture 

IV. RESULTS AND DISCUSSION 

This system is developed as a proof of concept for an 

interactive and portable client-server architecture and an out-

of-core volume ray casting application. Performance is given 

for a system with Intel Core i7-4770K- GeForce GTX 780 with 

15.6GB Memory. The server is implemented in C++. We have 

experimented with a variety of volume data including Visible 

Human Project’s Female Dataset. Figure 3 shows some 

renderings of the Visible Human Project’s Female Dataset [7], 

whose size is 2048×1216×5185 and High Resolution Brain 

CT data (courtesy NCI), whose size is 

1588×1588×1173.Visible Human Project’s Female dataset 

 



required slice-by-slice cleaning before applying our regular 

preprocessing.  

Fig. 3. Client Screenshots 
 

In our current implementation, volume data for both the 

volumes hold 8 bits per voxel. When client makes a “load a 

new volume” request, if the volume is not already 

preprocessed, then the preprocessing is automatically 

triggered. When preprocessing is completed, server sends 

message to the requesting client about completion of 

preprocessing stage. The bricks are stored sequentially in a 

file. At the time of rendering, when a brick at a certain level is 

required, its data is fetched from the appropriate position. 

Since spatially closer bricks are more likely to have similar 

projected area and belong to the same octree level, they appear 

adjacent to each other, and hence fetching them using Memory 

Mapped File (available in Boost library) is fast. We will 

explore maintaining a cache of bricks in memory as an 

improvement option for our system when we port the system 

to a decent server.  

We obtain acceptable visual quality, which is highly 

dependent on the transfer function, at an average frame rate of 

10Hz. Although our prototype system is missing many 

possible optimizations, the overall performance is promising. 

We are planning additional optimizations for future work. 

V. CONCLUSION AND FUTURE WORK 

We have presented an out-of-core volume ray-casting 

algorithm with a web-based interface and a client-server 

architecture.  Our system can render large volumes and display 

through a browser to allow users with mobile devices.  

 Compute intensive volume processing and out-of-core 

volume ray casting are performed on a remote server, while the 

interaction, transfer function design and display of the image 

rendered by the server is done through a browser running on a 

client device. The initial implementation results are promising, 

and interactive visualization is achieved on client devices.  

Management of bricks on the GPU is a crucial part of our 

algorithm.  Efficient mapping of the available brick slots in the 

GPU for the adaptively-computed, view-dependent brick 

candidates is crucial to the efficiency of the out-of-core 

algorithm. This can be posed as a classic divisible Knapsack 

Problem, where the weights of the items (bricks) are the same, 

but there is high benefit to having all the front bricks at the 

required resolution. Furthermore, we hope to take advantage of 

frame-to-frame coherence, and reduce the CPU to GPU 

transfers required for each frame.  
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a,b,c) Rendering of Visible Human Project Female Dataset[7] 
 

     
d) Client interface showing Transfer function for Brain Data set (L) and 
rendering (R). 

          
e,f) Renderings from Brain Data Set: with (L) and without (R) 

hierarchical brick outline. 
       


